Tecnología y Ciencias del Agua - page 91

89
Tecnología y Ciencias del Agua
, vol. VIII, núm. 3, mayo-junio de 2017, pp. 75-91
Pozo-Antonio
et al.
,
Tratamiento microbiano de aguas ácidas resultantes de la actividad minera: una revisión
ISSN 2007-2422
Johnson, D. B., Rolfe, S., Hallberg, K. B., & Iversen, E. (2001).
Isolation and phylogenetic characterization of acidophilic
microorganisms indigenous to acidic drainage waters
at an abandoned Norwegian copper mine.
Environ.
Microbiol.
, 3, 630-637.
Jones, D. l. S., Kohl, C., Grettenberger, C., Larson, L. N.,
Burgos, W. D., & Macalady, J. L. (2015). Geochemical
niches of iron-oxidizing acidophiles in acidic coal mine
drainage.
Applied and Environmental Microbiology
,
81
(4),
1242-1250.
Joshi, K. B. (2014). Microbes: Mini iron factories.
Indian J.
Microbiol
.,
54
(4), 483-485.
Klein, R., Tischler, J. S., Muhling, M., &Schlomann, M. (2013).
Bioremediation of mine water.
Advances in Biochemical
Engineering-Biotechnology
, 141, 109-172.
Korehi, H., Bloethe, M., & Schippers, A. (2014). Microbial
diversity at the moderate acidic stage in three different
sulfidic mine tailings dumps generating acid mine
drainage
. Research in Microbiology
,
165
(9), 713-718.
Koschorreck, M. (2008) Microbial sulphate reduction at a
low pH. FEMS
Microbiol. Ecol.
64, 329-342.
Kumar, R. N., McCullough, C. D., & Lund, M. A. (2011).
How does storage affect the quality and quantity of
organic carbon in sewage for use in the bioremediation of
acidic mine waters?
Eco. Eng
. 37, 1205-1213.
Li, C. Q., Qi, W. G., & Liu, X. B. (2009). The SLS system of
caving mining simulation and its application
. Journal of
Wuhan University of Technology
, 31, 132-134.
Malik, A. (2004). Metal bioremediation through growing
cells.
Environ. Int
., 30, 261-278.
Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing
heavy metal ions from wastewater: Progress and
prospects.
Crit. Rev. Biotechnol
.,
25
(3), 113-152.
Munoz, R., & Guieysse, B. (2006). Algal-bacterial processes
for the treatment of hazardous contaminants: A review.
Water Res
., 40, 2799-2815.
Muyzer, G., & Stams, A. J. M. (2008). The ecology and
biotechnology of sulphate-reducing bacteria.
Nature Rev,
Microbiol
., 6, 441-454.
Nancucheo, I., & Barrie-Johnson, D. (2011). Significance of
microbial communities and interactions in safeguarding
reactive mine tailings by ecological engineering.
Appl.
Environ. Microbiol
., 77, 8201-8208.
Nancucheo, I., & Barrie-Johnson, D. (2014). Removal of
sulfate from extremely acidic mine waters using low Ph
sulfidogenic bioreactors.
Hydrometallurgy
, 150, 222-226.
Natarajan, K. A. (2008). Microbial aspects of acid mine
drainage and its bioremediation.
Trans. Nonfer. Met. Soc.
China
,
18
(6), 1352-1360.
Newcombe, C. E., & Brennan, R. A. (2010). Improved passive
treatment of acid mine drainage in mushroom compost
amended with crab-shell chitin.
J. Environ. Eng. ASCE
,
136, 616-626.
Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., & Blowes, D.
W. (2000). Negative pH and extremely acidic mine waters
from Iron Mountain, California.
Environ. Sci. Tec
., 34, 254-
258.
Ohimain, E. I., Andriesse, W., & Van Mensvoort, M. E. F.
(2004). Environmental impacts of abandoned dredged
soils and sediments: Available options for their handling,
restoration and rehabilitation
. J. Soil Sediment
, 4, 59-65.
Orandi, S., Lewis, D. M., & Moheimani, N. R. (2012). Biofilm
establishment and heavy metal removal capacity of
an indigenous mining algal-microbial consortium in a
photo-rotating biological contactor.
Journal of Industrial
Microbiology & Biotechnology
,
39
(9), 1321-1331.
Orandi, S., & Lewis, D. M. (2013). Synthesising acid mine
drainage to maintain and exploit indigenous mining
microalgae and microbial assemblies for biotreatment
investigations.
Environmental Science and Pollution
Research
,
20
(2), 950-956.
Pierzynski, G. M., Lambert, M., Hetrick, B. A. D., Sweeney,
D. W., & Erickson, L. E. (2002). Phytostabilization of
metal mine tailings using tall fescue.
Practice Periodical
of Hazardous, Toxic, and Radioactive Waste Management
, 6,
212-217.
Pozo, S., Puente, I., Lagüela, S., & Veiga, M. (2014).
Techniques to correct and prevent acidity generated by
mining: A review.
DYNA Colombia
,
81
(186), 73-80.
Pulford, I. D. (1991). A review of methods to control acid
generation of pyritic coal mine waste (pp. 269-278). In:
Land Reclamation
. Davies, M.C.R. (ed.). London: Elsevier.
Renella, G., Landi, L., & Nannipieri, P. (2004). Degradation
of low molecular weight organic acids complexed with
heavy metals in soil.
Geoderma
, 122, 311-315.
Reuben, T. N., Worwood, B. K., Carrigan, L. D., & Sorensen,
D. L. (2011). Technical note: Pineview reservoir nutrient
loading, unloading, and the role of groundwater in the
estimates.
Transactions of the ASAB
E, 54, 2219-2225.
Sahinkaya, E., & Yucesoy, Z. (2010). Biotreatment of acidic
zinc- and copper-containing wastewater using ethanol-
fed sulfidogenic anaerobic baffled reactor
. Bioprocess and
Biosystems Engineering
,
33
(8), 989-997.
Sahinkaya, E., Dursun, N., Ozkaya, B., & Kaksonen, A. H.
(2013). Use of landfill leachate as a carbon source in a
sulfidogenic fluidized-bed reactor for the treatment of
synthetic acid mine drainage.
Minerals Engineering
, 48,
56-60.
Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F. M., & Stams, A.
J. M. (2014). Sulfate reduction at low pH to remediate acid
mine drainage.
Journal of Hazardous Materials
, 269, 98-109.
Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock,
D., & Wright, T. L. (2010). The biogeochemistry and
microbiology of sulfidic mine waste and bioleaching
dumps and heaps, and novel Fe(II)-oxidizing bacteria.
Hydrometallurgy
, 104, 342-350.
1...,81,82,83,84,85,86,87,88,89,90 92,93,94,95,96,97,98,99,100,101,...180
Powered by FlippingBook