Tecnología y Ciencias del Agua - page 90

88
Tecnología y Ciencias del Agua
, vol. VIII, núm. 3, mayo-junio de 2017, pp. 75-91
Pozo-Antonio
et al.
,
Tratamiento microbiano de aguas ácidas resultantes de la actividad minera: una revisión
ISSN 2007-2422
Battagia-Brunet, F., Crouzet, C., Burnol, A., Coulon, S.,
Morin, D., & Joulian, C. (2012). Precipitation of arsenic
sulphide from acidic water in a fixed-film bioreactor.
Water Res
., 46, 3923-3933.
Batty, L. C., & Younger, P. L. (2002). Critical role of
macrophytes in achieving low iron concentrations in
mine water treatment wetlands.
Environ. Sci. Technol
., 36,
3997-4002.
Bekmezci, O. K., Ucar, D., Kaksonen, A. H., & Sahinkaya,
E. (2011). Sulfidogenic biotreatment of synthetic acid
mine drainage and sulfide oxidation in anaerobic baffled
reactor.
Journal of Hazardous Materials
,
189
(3), 670-676.
Bhatnagar, M., & Singh, G. (1991). Growth inhibition and
leakage of cellular material from
Thiobacillus ferrooxidans
by organic compounds
. J. Environ. Biol
., 12, 385-399.
Bernardes de Souza, C.M., &Mansur,M. B. (2011).Modelling
of Acid Mine Drainage (AMD) in columns.
Braz
.
J. Chem.
Eng
., 28, 425-432.
Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C.
G. (2003). The geochemistry of acid mine drainage (pp.
149-204). En:
Environmental Geochemistry
,
Treatise on
Geochemistry 9
. Lollar, B. S. (ed.). Amsterdam: Elsevier.
Bonnefoy, V., & Holmes, D. S. (2012). Genomic insights into
microbial iron oxidation and iron uptake strategies in
extremely acidic environments.
Environ. Microbiol
., 14,
1597-1611.
Chabbi, A., & Rumpel, C. (2004). Decomposition of plant
tissue submerged in an extremely acidic mining lake
sediment: Phenolic CuO-oxidation products and solid-
state 13C NMR spectroscopy
. Soil Biol. Biochem
., 36, 1161-
1169.
Cohen-Ronald, R. H. (2006). Use of microbes for cost
reduction of metal removal from metals and mining
industry waste streams.
Journal of Cleaner Production
,
14
(12- 13), 1146-1157.
Cruz, R., & Monroy, M. (2006). Evaluación de la reactividad
de sulfuros de hierro y residuos mineros. Metodología
basada en la aplicación de la voltamperometría cíclica.
Quim. Nova
, 29, 510-519.
Das, B. K., Roy, A., Koschorreck, M., Mandal, S. M., Wendt-
Potthoff, K., & Bhattacharya, J. (2009). Occurrence
and role of algae and fungi in acid mine drainage
environment with special reference to metals and sulfate
immobilization.
Water Res
., 43, 883-894.
Dopson,M.,&Johnson,D.B.(2012).Biodiversity,metabolism
and applications of acidophilic sulfur-metabolizing
microorganisms
. Environmental Microbiology
,
14
(10), 2620-
2631.
Ehrlich, H. L. (2001). Past, present and future of
biohydrometallurgy.
Hydrometallurgy
, 59, 127-134.
Fedorak, P. M., Westlake, D. W. S., Anders, C., Kratchovil,
B., Motkosky, N., Anderson, W. B., & Huck, P. M. (1986).
Microbial release of 226Ra
2+
from (Ba, Ra)S
4
sludges from
uranium mine wastes.
Appl. Environ. Microb.
, 52, 262-268.
Gallert, C., & Winter, J. (2002). Bioremediation of soil
contaminated with alkyllead compounds.
Wat. Res.
36,
3130-3140.
García-Moyano, A., González-Toril, E., Aguilera, A., &
Amils, R. (2012). Comparative microbial ecology study
of the sediments and the water column of the Río Tinto,
an extreme acidic environment.
FEMS Microbiol. Ecol
. 81,
303-314.
González-Toril, E., Llobet-Brossa, E., Casamayor, E. O.,
Amann, R., & Amils, R. (2003). Microbial ecology of
an extreme acidic environment. The Tinto River.
Appl.
Environ. Microbiol
., 69, 4853-4865.
Guo, L., & Cutright, T. J. (2015). Effect of citric acid and
bacteria on metal uptake in reeds grown in a synthetic
acid mine drainage solution.
Journal of Environmental
Management
, 150, 235-242.
Guo, L., Cutright, T. J., &Duirk, S. (2015). Effect of citric acid,
rhizosphere bacteria, and plant age on metal uptake in
reeds cultured in acid mine drainage.
Water Air Soil Pollut
,
226
(2264), 1-11.
Gupta, V. K., Shrivastava, A. K., & Neeraj, J. (2001).
Biosorption of chromium (VI) from aqueous solutions by
green algae Spirogyra species.
Water Res
.,
35
(17), 4079-
4085.
Hallberg, K. B. (2010). New perspectives in acid mine
drainage microbiology.
Hydrometallurgy
, 104, 448-453.
Hedrich, S., Lünsdorf, H., Kleeberg, R., Heide, G., Seifert,
J., & Schlömann, M. (2011). Schwertmannite formation
adjacent to bacterial cells in a mine water treatment plant
and in pure cultures of Ferrovum myxofaciens.
Environ.
Sci. Technol
., 45, 7685-7692.
Ilbert, M., & Bonnefoy, V. (2013) Insight into the evolution
of the iron oxidation pathways.
Biochim Biophys Acta.
,
1827
(2), 161-175.
Inocencio-Flores, D., Velázquez-Machuca, M. A., Pimentel-
Equihua, J. L., Montañez-Soto, J. L., & Venegas-González,
J. (2013). Hydrochemistry of groundwater in the Duero
River basin and regulations for domestic use.
Water
Technology and Sciences
,
4
(5), 111-126.
IPAT-UNESCO (2000).
Pesquisa e desenvolvimento de
metodologias para o controle de drenagem ácida e tratamento
de efluentes de industria carbonífera
184 pp.). Relatorio
técnico. Criciúma: Instituto de Pesquisas Ambientais e
Tecnológicas, Universidade do Extremo Sul Catarinense.
Johnson, D. B. (2003). Chemical and microbiological
characteristics of mineral spoils and drainage waters at
abandoned coal and metal mines.
Water Air Soil Pollut.
Focus
, 3, 47-66.
Johnson, D. B., & Hallberg, K. B. (2003). The microbiology of
acidic mine waters.
Res. Microbiol
. 154, 466-473.
Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage
remediation options: A review.
Sci. Total Environ
., 338,
3-14.
1...,80,81,82,83,84,85,86,87,88,89 91,92,93,94,95,96,97,98,99,100,...180
Powered by FlippingBook