63
Tecnología y Ciencias del Agua
, vol. VIII, núm. 1, enero-febrero de 2017, pp. 53-64
Pérez
et al.
,
Tratamiento del drenaje ácido de minas: estudio de reducción de sulfato en mezclas orgánicas
ISSN 2007-2422
•
Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. J.
(2003). The geochemistry of acid mine drainage (pp. 149-
204). En:
Treatise on Geochemistry
. Holland, H. D., & Karl,
K. (eds.). Elsevier. Amsterdam
.
Cocos, I., Zagury, G., Clement, B., & Samson, R. (2002).
Multiple factor design for reactive mixture selection for
use in reactive walls in mine drainage treatment.
Water
Research
,
36
(1), 167-177.
Conca, J., & Wright, J. (2006). An Apatite II permeable
reactive barrier to remediate groundwater containing Zn,
Pb and Cd.
Applied Geochemistry, 21
(8), 2188-2200.
Costa, M., Martins, M., Jesus, C., & Duarte, J. (2008).
Treatment of acid mine drainage by sulphate-reducing
bacteria using low cost matrices.
Water Air Soil Pollut
.,
189
(1-4), 149-162.
Dold, B. (2010). Basic concepts in environmental
geochemistry of sulfidic mine-waste management,
Waste
Manag
.,
24
, 173-198.
Gibert, O., De Pablo, J., Cortina, J., & Ayora, C. (2004).
Chemical characterization of natural organic substrates
for biological mitigation of acid mine drainage.
Water
Research
,
38
(19), 4186-4196.
Gibson, G. (1990). Physiology and ecology of the sulphate-
reducing bacteria.
Journal of Applied Bacteriology
,
69
(6),
769-797.
Johnson, D., & Hallberg, K. (2003). The microbiology of
acidic mine waters.
Research in Microbiology
,
154
(7), 466-
473.
Johnson, D., & Hallberg, K. (2005). Biogeochemistry of the
compost bioreactor components of a composite acid mine
drainage passive remediation system.
Science of the Total
Environment
,
338
(1), 81-93.
Karri, S., Sierra-Alvarez, R., & Field, J. (2005). Zero valent
iron as an electron-donor for methanogenesis and
sulfate reduction in anaerobic sludge.
Biotechnology and
Bioengineering
,
92
(7), 811-819.
Liamleam, W., & Annachhatre, A. P. (2007). Electron donors
for biological sulfate reduction.
Biotechnology Advances
,
25
(5), 452-463.
Lindsay, M., Ptacek, C., Blowes, D., & Gould, W. (2008).
Zero-valent iron and organic carbon mixtures for
remediation of acid mine drainage: Batch experiments.
Applied Geochemistry
,
23
(8), 2214-2225.
Martins, M., Faleiro, M., Barros, R., Veríssimo, A., Barreiros,
M., & Costa, M. (2009). Characterization and activity
studies of highly heavy metal resistant sulphate-reducing
bacteria tobeused inacidminedrainagedecontamination.
Journal of Hazardous Materials,
166(2-3), 706-713.
Neculita, C., Zagury, G., & Bussiere, B. (2007). Passive
treatment of acid mine drainage using sulfate-reducing
bacteria: Critical review and research needs.
Journal of
Environmental Quality
,
36
(1), 1-16.
Neculita, C., & Zagury, G. (2008). Biological treatment of
highly contaminated acidmine drainage in batch reactors:
Log-term treatment and reactivemixture characterization.
Journal of Hazardous Materials
,
157
(2), 358-366.
Nzihou, A., & Sharrock, P. (2010). Role of phosphate in the
remediation and reuse of heavy metal polluted wastes
and sites.
Waste and Biomass Valorization
,
1
(1), 163-174.
Nordstrom, D., Alpers, C., Ptacek, C., & Blowes, D. (2000).
Negative pH and extremely acid mine waters from Iron
Mountain, California.
Environ. Sci. Technol
.,
34
(2), 254- 258.
Oliva, J., Cama, J., Cortina, J. L., Ayora, C., & De Pablo, J.
(2012). Biogenic hydroxyapatite (Apatite II™) dissolution
kinetics and metal removal from acid mine drainage.
Journal of Hazardous Materials
, 213, 7-18.
Pagnanelli, F., Cruz-Viggi, C., Mainelli, S., & Toro, L.
(2009). Assessment of solid reactive mixtures for the
development of biological permeable reactive barriers.
Journal of Hazardous Materials
,
170
(2), 998-1005.
Prasad, D., Wai, M., Bérubé, P., &Henry, J. (1999). Evaluating
substrates in the biological treatment of acid mine
drainage.
Environmental Technology
,
20
(5), 449-458.
Pereyra, L. P., Hiibel, S. R., Pruden, A., & Reardon, K. F.
(2008). Comparison of microbial community composition
and activity in sulfate reducing batch systems remediating
mine drainage.
Biotechnology and Bioengineering
,
101
(4),
702-713.
Pérez, N., Diaz, I. C., Barahona, E., Schwarz, A. O., &
Urrutia, H. (2011). Effect of reactive material distribution
in the biological treatment of acid mine drainage. 2nd
International Seminar on Environmental Issues in the
Mining Industry, Enviromine2011, Chile.
Pérez, N., Schwarz, A., Sanhueza, P., & Chaparro, G. (2016).
Performance of three bench-scale diffusive exchange
systems during treatment of acidmine drainage with high
copper concentration.
Desalination and Water Treatment.
Artículo aceptado.
Rabus, R., Hansen, T., & Widdel, F. (2006). Dissimilatory
sulfate - and sulfur-reducing prokaryotes (pp. 659-768).
En:
The Prokaryotes
. Vol 2. Chapter 1.22. SPRINGER, New
York.
Robinson, M. B., & Pellegrino, E. (1966). The chemical
anatomy of bone: I. A comparative study of bone
composition in sixteen vertebrates.
The Journal of Bone &
Joint Surgery
,
51
(2), 456-466.
Salas-Maldonado, A., Ayala-Galdós, M. E., &Albrecht-Ruiz,
M. (2002). Contenido de EPA y DHA en aceite crudo de
pescado producido en Perú durante el periodo 1996-2000.
Cienc. Tecnol. Aliment.
,
3
(5), 283-287.
Schwarz, A. O., & Rittmann, B. E. (2010). The diffusion-
active permeable reactive barrier.
Journal of Contaminant
Hydrology
,
112
(1), 155-162.
Simate, G., & Ndlovu, S. (2014). Acid mine drainage:
Challenges and opportunities.
J. Environ. Chem. Eng
.,
2
(3),
1785-1803.
Tsukamoto, T., Killion, H., & Miller, G. (2004). Column
experiments for microbiological treatment of acid