Tecnología y Ciencias del Agua - page 159

157
Tecnología y Ciencias del Agua
, vol. VIII, núm. 1, enero-febrero de 2017, pp. 155-165
Campos-Aranda,
Definición de tres épocas de crecientes utilizando estadísticos direccionales
ISSN 2007-2422
Para establecer los
índices de estacionalidad
(
a
,
DMC
y
r
) se comienza por transformar cada
fecha de ocurrencia de las crecientes anuales a
día juliano (
D
i
); es decir, de 0 a 365. Lo anterior
implica no considerar los años bisiestos. Las fe-
chas de enero quedan igual, pero a las de febrero
se les suma 31, a las de marzo 59, a las de abril
90 y así sucesivamente hasta las de diciembre,
que se les agrega 334, para obtener el día juliano.
Enseguida se obtiene el ángulo
a
i
en radianes
correspondiente a la fecha
i
de cada creciente
(
D
i
), con la expresión siguiente:
=
2
D
i
i
365
π
(1)
en la cual,
p
es número pi, con 3.1415927 como
valor aproximado. En seguida, las coordenadas
x
y
y
de las fechas de ocurrencia de las crecientes
descritas por los ángulos
a
i
se estiman con base
en los cosenos y senos, y se obtienen sus valores
medios, según las ecuaciones siguientes:
x
=
1
n
cos
i
( )
i
=
1
n
(2)
y
=
1
n
sen
i
( )
i
=
1
n
(3)
siendo
n
el número de fechas de crecientes
anuales analizadas. Ahora, la dirección media
(
a
) de la fecha promedio de las crecientes será:
=
arc tan
y
x
(4)
La aplicación de la ecuación anterior se rea-
liza obteniendo primero el arco tangente de
y
entre
x
, ambas con signo positivo, denominado
α
, en radianes; entonces, si
x
y
y
son positivas,
a
=
α
; si
x
< 0 y
y
> 0
a
=
π
α
; si ambas son
negativas,
a
=
π
+
α
, y por último, si
x
> 0 y
y
< 0
a
= 2
π
α
. El valor de
a
en día juliano,
denominado
día medio de las crecientes
(
DMC
), se
obtiene primero dividiendo entre 2
π
y después
multiplicando por 365. El índice
DMC
indica el
tiempo promedio de ocurrencia de los gastos
máximos anuales en una cuenca dada. Se puede
esperar que cuencas con valores similares del
DMC
presenten semejanzas en otras caracterís-
ticas hidrológicas importantes. Lógicamente,
el
DMC
estará relacionado con el tamaño de la
cuenca y con su localización geográfica dentro
de la región hidrológica estudiada.
Una medida de la variabilidad de las
n
fe-
chas de ocurrencia de las crecientes, en relación
con el
DMC
, se puede estimar calculando la
resultante media, cuya expresión es:
r
=
x
2
+
y
2
(5)
El
índice de estacionalidad
r
es una medida
adimensional de la dispersión de los datos;
toma valores entre cero y uno. Un valor unita-
rio indica que todas las crecientes ocurren en
la misma fecha; en cambio, un valor cercano a
cero implica gran variabilidad de ocurrencias
a lo largo de todo el año. Ramírez-Orozco
et al.
(2009) establecen los siguientes cinco grados de
estacionalidad: (1) muy fuerte, cuando
r
> 0.90;
(2) fuerte, cuando
r
fluctúa entre 0.70 y 0.90; (3)
media, cuando
r
varía de 0.50 a 0.70; (4) baja,
cuando
r
cambia de 0.10 a 0.50, y (5) muy baja o
débil, cuando
r
< 0.10. Chen
et al
. (2013) indican
que si
r
es cercano a la unidad, se puede esperar
que una sola temporada o época de crecientes
sea dominante.
Estadísticos direccionales aplicados (primer
método)
Chen
et al
. (2013) proponen utilizar la desviación
estándar circular (
σ
) para dividir la temporada
de crecientes en tres épocas. Tal estadístico está
relacionado con la desviación circular (
S
), según
la expresión siguiente:
1
S
=
e
1
2
2
σ
(6)
S
es un estadístico de dispersión común
definido en términos de la longitud del vector
resultante estandarizado, es decir:
1...,149,150,151,152,153,154,155,156,157,158 160,161,162,163,164,165,166,167,168,169,...174
Powered by FlippingBook